Главная


yilmaz
Kaban
lgf
prof
comall
mla

Фрезерный станок 6а12п электрическая схема


Электросхемы фрезерных станков 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш, 6P12, 6Р12Б, 6P13, 6Р13Б

Сведения о производителе консольно-фрезерных станков 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш, 6P12, 6P13

Производитель универсальных фрезерных станков - Горьковский завод фрезерных станков, основанный в 1931 году.

Производство фрезерных станков на Горьковском станкостроительном заводе началось в 1932 году.

Серия 6Р Горьковского завода фрезерных станков ГЗФС


Электросхемы консольно-фрезерных станков 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш, 6P12, 6Р12Б, 6P13, 6Р13Б

Общие сведения

В настоящем руководстве приведены сведения по эксплуатация электрооборудования станков моделей 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш, 6P12, 6Р12Б, 6P13, 6Р13Б.

На каждом из указанных станков могут применяться следующие величины напряжений переменного тока:

  • силовая цепь 3х50 Гц, 60 Гц - 220, 380, 400, 415, 440 В;
  • цепь управления 50 Гц, 60 Гц - 110 или 220 В;
  • цепь местного освещения 50 Гц, 60 Гц - 36, 24 или 110 В;
  • цепь электродинамического торможения -56-60 В (для сети 380-440 В) и 36 В (для сети 220 В).

Конкретно для каждого станка питающее напряжение указывается в свидетельстве о приемке (см. руководство к станкам, ч. III).

Освещение рабочего места производится светильником местного освещения, смонтированным слева на станине станка.

В консоли рассоложен электромагнит Y1 для быстрых перемещений.

Кнопки управления смонтированы на пультах - на консоли и левой стороне станины.

Все аппараты управления размещены на четырех панелях, встроенных в нишах с дверками, на лицевую сторону которых выведены рукоятки следующих органов управления:

  • F1 - вводный выключатель;
  • S2 (S4) - реверсивный переключатель шпинделя;
  • S6 - переключатель режимов;
  • S3 - выключатель охлаждения.

Станки 6Р82Ш и 6Р83Ш в отличие от других станков имеют два электродвигателя для привода горизонтального и поворотного шпинделей.

Завод-изготовитель оставляет за собой право вносить в электрооборудование станков дальнейшие изменения и усовершенствования.

При уходе за электрооборудованием необходимо периодически проверять состояние пусковой и релейной аппаратуры.

При осмотрах релейной аппаратуры особое внимание следует обращать на надежное замыкание и размыкание контактных мостиков.

Во время эксплуатация электродвигателей следует систематически производить их технические осмотры в профилактические ремонты. Периодичность технически осмотров устанавливается в зависимости от производственных условий, но не реже одного реза в два месяца. При профилактических ремонтах должна производиться разборка электродвигателя, внутренняя в наружная чистка, замена смазки подшипников. Смену смазки подлинников при нормальных условиях работы следует производить через 4000 часов работы, но при работе электродвигателя в пыльной в влажной среде ее следует производить чаще -по мере необходимости.

Перед набивкой свежей смазкой подшипники должны быть тщательно промыты бензином. Камеру заполняют смазкой на 2/3 ее объема.


Первоначальный пуск станка

При первоначальном пуске станка необходимо прежде всего проверить внешним осмотром надежность заземления и состояние монтажа электрооборудования. При помощи вводного выключателя F1 станок подключить к цеховой сети.

Проверять четкость срабатывания магнитных пускателей в реле при помощи кнопок в переключателей станка, ограничение движений в наладочном режиме, при управлении станком от рукояток в автоматическом цикле в при работе с круглым столом.


История выпуска станков Горьковским заводом, ГЗФС

В 1937 году на Горьковском заводе фрезерных станков были изготовлены первые консольно-фрезерные станки серии 6Б моделей 6Б12 и 6Б82 с рабочим столом 320 х 1250 мм (2-го типоразмера).

В 1951 году запущена в производство серия консольно-фрезерных станков: 6Н12, 6Н13П, 6Н82, 6Н82Г. Станок 6Н13ПР получил “Гран-При” на всемирной выставке в Брюсселе в 1956 году.

В 1960 году запущена в производство серия консольно-фрезерных станков: 6М12П, 6М13П, 6М82, 6М82Г, 6М83, 6М83Г, 6М82Ш.

В 1972 году запущена в производство серия консольно-фрезерных станков: 6Р12, 6Р12Б, 6Р13, 6Р13Б, 6Р13Ф3, 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш.

В 1975 году запущены в производство копировальные консольно-фрезерные станки: 6Р13К.

В 1978 году запущены в производство копировальные консольно-фрезерные станки 6Р12К-1, 6Р82К-1.

В 1985 году запущена в производство серия 6Т-1 консольно-фрезерных станков: 6Т12-1, 6Т13-1, 6Т82-1, 6Т83-1 и ГФ2171.

В 1991 году запущена в производство серия консольно-фрезерных станков: 6Т12, 6Т12Ф20, 6Т13, 6Т13Ф20, 6Т13Ф3, 6Т82, 6Т82Г, 6Т82ш, 6Т83, 6Т83Г, 6Т83Ш.


Читайте также: Сравнительные характеристики консольно-фрезерных станков серий 6М, 6Р, 6Т



Описание работы электросхемы консольно-фрезерных станков

Электросхема (рис. 1, 2) позволяет производить работу на станке в следующих режимах:

  • управление от рукояток и кнопок управления
  • автоматическое управление продольными перемещениями стола
  • режим - круглый стол

Выбор режима работы производится переключателем S6.

При работе станка от рукояток и невращающемся шпинделе необходимо переключатель S2 (S4) установить в нулевое положение.

ВНИМАНИЕ! ПРЕЖДЕ ЧЕМ ОТКЛЮЧИТЬ СТАНОК ОТ СЕТИ ИЛИ ПРОИЗВЕСТИ РЕВЕРС ПРИ РАБОТАЩЕМ ЭЛЕКТРОДВИГАТЕЛЕ ШПИНДЕЛЯ НЕОБХОДИМО КНОПКОЙ "СТОП" ОТКЛЮЧИТЬ ЭЛЕКТРОДВИГАТЕЛЬ

Для облегчения переключения скоростей шпинделя я подачи в станке предусмотрено импульсное включение электродвигателя шпинделя - кнопкой S9, а электродвигателя подачи - конечным выключателем S14. При нажатии на кнопку S9 включается контактор шпинделя К4 в реле напряжения К1, н.о. контакты которого включают реле КЗ, последний через свой н.о. контакт становится на самопитание, а н.з. контакт разрывает цепь питания контактора К4.

При управлении от рукояток работа электросхемы обеспечивается замыканием контактов соответствующих конечных выключателей и кнопок.

Включение в отключение электродвигателя подачи осуществляется от рукояток, воздействующих на конечные выключатели продольной подачи (S17, S19), вертикальной в поперечной подач (S16, S15).

Включение и отключение шпинделя производится соответственно кнопками "Пуск" - S10, S11; "Стоп" - S7, S8. При нажатии на кнопку "Стоп" одновременно с отключением электродвигателя шпинделя отключается и электродвигатель подачи.

Быстрый ход стола происходит при нажатии кнопки S12 (S13) "Быстро", включающей контактором К3 электромагнит быстрого хода Y1.

Торможение электродвигателя шпинделя - электродинамическое. При нажатии кнопок S7 или S8 включается контактор К2, который подключает обмотку электродвигателя к источнику постоянного тока, выполненному на выпрямителях Y1. Реле К1 служит для защиты селеновых выпрямителей от пробоя повышенным напряжением в момент отключения электродвигателя.

При работе на одной из подач исключается возможность случайного включения другой подачи: блокировка осуществляется конечными выключателями S15- S19. При автоматическом управлении переключатель S6 должен быть установлен в положение "Автоматический цикл". Кроме того, необходимо произвести механическое переключение валика, расположенного в салазках станка, в положение "Автоматический цикл". При последнем положения валика кулачковая муфта продольного хода заперта в конечный выключатель S20 нажат.

Автоматическое управление осуществляется при помощи кулачков, устанавливаемых на столе. При движения стола кулачки, воздействуя на рукоятку включения продольной подачи в верхнюю звездочку (рис. 3), производят необходимые переключения в электросхеме конечными выключателями S17, S19, S18. Конечный выключатель S20 исключает возможность включения поперечных и вертикальных подач в этом режиме работы.

Описание работы рукояток и звездочек, воздействующих на конечные выключателя, а также настройки кулачков см. в руководстве по эксплуатации, часть I.

Работа электросхемы в автоматическом цикле - быстрый подвод - рабочая подача - быстрый отвод - происходит следующим образом: при отключенной рукоятке продольной подачи шток, воздействующий на конечный выключатель S18, должен находиться в глубокой впадине нижней звездочки. Контакты 41-17 конечного выключателя S18 должны быть замкнуты. С включением рукоятки продольного хода вправо происходит быстрое движение стола вправо. Отключение быстрого хода в нужной точке производится при воздействия кулачка на верхнюю звездочку, при повороте которой оба контакта конечного выключателя S18 размыкаются. Стол продолжает движение на рабочей подаче. При воздействии кулачков на рукоятку в звездочку происходят реверс подачи и включение быстрого хода влево. При переходе рукоятки через нейтральное положение питание контактора К5 осуществляется через контакты 35-43 конечного выключателя S18. Шток, воздействующий на конечный выключатель, в этот момент должен находиться на участке постоянной кривизны нижней звездочки.

Отключение быстрого хода влево в конец цикла осуществляются при переводе рукоятки кулачком в нейтральное положение. Работа станка на других циклах производится путем настройки соответствующих кулачков. Работа электросхемы в этом случае аналогична.

При работе с круглым столом переключатель S6 устанавливается в положение "Круглый стол". При этом включение продольных, поперечных и вертикальных подач исключается. Блокировка осуществляется конечными выключателями S14- S20.

Вращение круглого стола осуществляется от электродвигателя подач, пуск которого производится контактором К6 одновременно с электродвигателем шпинделя.

Быстрый ход круглого стола происходит при нажатии кнопки "Быстро", включающей контактор К3 электромагнита быстрого хода.



Cхема электрическая консольно-фрезерных станков 6Р82, 6Р82Г, 6Р82Ш, 6Р83, 6Р83Г, 6Р83Ш, 6P12, 6Р12Б, 6P13, 6Р13Б

Электрическая схема консольно-фрезерных станков серии 6Р

1. Электрическая схема консольно-фрезерных станков серии 6Р. Скачать в увеличенном масштабе

2. Схема электрическая принципиальная фрезерных станков 6Р. Скачать в увеличенном масштабе

2. Электрическая схема консольно-фрезерных станков серии 6Р. Скачать в увеличенном масштабе

3. Электрическая схема консольно-фрезерных станков серии 6Р. Скачать в увеличенном масштабе

4. Cхема электрических соединений консольно-фрезерных станков серии 6Р. Скачать в увеличенном масштабе

Диаграммы переключателей. Назначение путевых выключателей

Диаграммы переключателей. Назначение путевых выключателей

Циклограмма работы станка. Диаграммы переключателей. Назначение путевых выключателей. Скачать в увеличенном масштабе

Перечень элементов схемы электрической принципиальной консольно-фрезерных станков

Перечень элементов схемы электрической принципиальной консольно-фрезерного станка

Перечень элементов схемы электрической принципиальной консольно-фрезерного станка. Скачать в увеличенном масштабе

Перечень элементов схемы электрической принципиальной консольно-фрезерного станка

Перечень элементов схемы электрической принципиальной консольно-фрезерного станка. Скачать в увеличенном масштабе

Характеристики электродвигателей и нагревательных элементов консольно-фрезерных станков

Характеристики электродвигателей и нагревательных элементов фрезерных станков

Характеристики электродвигателей и нагревательных элементов станков. Скачать в увеличенном масштабе

Перечень элементов электрооборудования консольно-фрезерных станков

Перечень элементов электрооборудования консольно-фрезерных станков

Перечень элементов электрооборудования консольно-фрезерных станков. Скачать в увеличенном масштабе

Cхема расположения электрооборудования на консольно-фрезерных станках 6Р82, 6Р82Г, 6Р83, 6Р83Г

Cхема расположения электрооборудования на фрезерных станках 6Р82, 6Р82Г, 6Р83, 6Р83Г

Cхема расположения электрооборудования на фрезерных станках 6Р82, 6Р82Г, 6Р83, 6Р83Г. Скачать в увеличенном масштабе

Cхема расположения электрооборудования на консольно-фрезерных станках 6Р12, 6Р12Б, 6Р13, 6Р13Б

Cхема расположения электрооборудования на фрезерных станках 6Р12, 6Р12Б, 6Р13, 6Р13Б

Cхема расположения электрооборудования на фрезерных станках 6Р12, 6Р12Б, 6Р13, 6Р13Б. Скачать в увеличенном масштабе

Cхема расположения электрооборудования на консольно-фрезерных станках 6Р82Ш, 6Р83Ш

Cхема расположения электрооборудования на фрезерных станках 6Р82Ш, 6Р83Ш

Cхема расположения электрооборудования на фрезерных станках 6Р82Ш, 6Р83Ш. Скачать в увеличенном масштабе

Перечень графических символов на консольно-фрезерном станке

Перечень графических символов на консольно-фрезерном станке

Перечень графических символов на консольно-фрезерном станке. Скачать в увеличенном масштабе

Перечень графических символов на консольно-фрезерном станке

Перечень графических символов на консольно-фрезерном станке. Скачать в увеличенном масштабе

Перечень графических символов на консольно-фрезерном станке

Перечень графических символов на консольно-фрезерном станке. Скачать в увеличенном масштабе

Описание электрооборудования фрезерных станков. Видеоролик.




    Список литературы:

  1. Консольно-фрезерные станки 6Р82, 6Р83, 6Р82Г, 6Р83Г, 6Р82Ш, 6Р83Ш, 6Р12, 6Р13, 6Р12Б, 6Р13Б. Руководство по эксплуатации электрооборудования 6Р82.ЭО.000 РЭ1,

  2. Игнатов В.А. Электрооборудование современных металлорежущих станков и обрабатывающих комплексов, 1991
  3. Комаров А.Ф. Наладка и эксплуатация электрооборудования металлорежущих станков, 1975
  4. Розман Устройство, наладка и эксплуатация электроприводов металлорежущих станков, 1985
  5. Чернов Е.А. Комплектные электроприводы станков с ЧПУ, 1989
  6. Харизоменов И.В. Электрическое оборудование металлорежущих станков, 1958

Связанные ссылки

Каталог справочник консольно-фрезерных станков

Паспорта к консольно-фрезерным станкам и оборудованию

Купить каталог, справочник, базу данных: Прайс-лист информационных изданий


угловых выключателей оборудования Электрические автоматические выключатели для машины

Zhejiang Chinehow Technology Co., Ltd. - это новая, но выдающаяся компания, которая занимается исследованием, производством и продажей автоматических выключателей для защиты оборудования.

С момента основания в 2004 году, продолжая развивать концепцию самостоятельных исследований и инноваций, до сих пор мы разработали несколько серий продуктов, таких как серии CVP-SM, CVP-TH и CVP-FR. Мы собираем много талантов в различных областях, в том числе электрических приборов для расширения возможностей исследования производства.Мы достигли многих результатов исследований. Основной технологический индекс приближается к международному уровню. Между тем, управление компанией и эффективность труда и сохранение ресурсов были улучшены. Наши выключатели с их точным отключением и стабильной работой и высоким качеством были приняты многими производителями генераторных установок и производителями оборудования связи.

Наши ведущие продукты, серии CVP-SM и CVP-TH и CVP-FR, получили множество национальных технических монополий, и мы получили сертификаты ISO9001: 2000, CE, TUV, UL, CSA и RoHS.Выключатели с хорошими характеристиками применяются в областях промышленной автоматизации, медицинского обслуживания, связи, обработки данных, общественного транспорта, ИБП и передачи сигналов.

Наши выключатели соответствуют стандартам GB17701-1999, IEC60934: 1993 и C22.2. В настоящее время, благодаря динамичному развитию науки и техники, сотрудники компании Chinehow придерживаются ориентированной на людей концепции управления и следуют руководству по техническим инновациям, сочетающим концепцию инноваций, инновации в области управления и технические инновации.

Мы настойчиво придерживаемся концепции, ориентированной на клиента, чтобы повысить удовлетворенность клиентов. Прилагая максимальные усилия в области долгосрочных инноваций, постоянного развития и постоянного улучшения, мы стремимся сделать бренд Chinehow одним из всемирно известных брендов.

.

оцинкованный 2p электрический выключатель

Качественный оцинкованный 2-контактный автоматический выключатель

Качественный 2-контактный автоматический выключатель

Описание продукта

Качественный оцинкованный 2-контактный автоматический выключатель

ОБЩЕЕ ИСПОЛЬЗОВАНИЕ
Поляки прямого встраивания минимизируют требования площадки
, снижая арендную ставку и затраты на приобретение
. Они рассчитаны на быструю установку
и отвечают требованиям современных динамических коммуникационных сред
.Независимо от того, используете ли вы
с поддержкой широкополосного доступа, PCS, системы безопасности или другие облегченные системы
, конические стальные опоры ROHN
предлагают исключительно широкий выбор конструкций.
ХАРАКТЕРИСТИКИ для 2-контактного электрического выключателя
• Полностью оцинкованная горячим способом после изготовления
• Быстрая и простая установка
• Предназначена для применений с жесткими требованиями по

• Внутренняя прокладка линий электропередачи
• Каждый полюс поставляется со следующим:
• Сборочные чертежи и стандартные сведения о фундаменте
• (4) Порты 5 ”x 7” с (2) крышками портов
• (3) Зажимные проушины на каждой стороне соединителей
• (3) Зажимы для заземления
• (1) Вентилируемые защитная крышка
• (1) Опорная плита приварена ко дну
• Опорные кронштейны безопасности для 2-контактного электрического выключателя
• (1) Предупреждающий знак безопасности
• (1) Идентификационная метка полюса
• Крепежные зажимы для дополнительных ступенчатых болтов
• Дополнительные элементы доступны и могут быть заказаны
отдельно.См. Аксессуары на стр. 225.
• Возможны нестандартные конструкции для любой высоты или применения
.

Высота

От 9 метров до 100 метров

Костюм для

Передача и распределение электроэнергии

Форма

Полигональные или конические

Материал

Обычно Q345B / A572, минимальная предел текучести ≥ 345 Н / мм²

Q235B / A36, минимальная предел текучести ≥ 235 Н / мм²

, а также горячекатаная катушка от ASTM A572 GR65, , SS400

Мощность

от 10 кВ до 220 кВ

Допуск измерения

В соответствии с требованиями клиента.

Обработка поверхности

Горячее цинкование в соответствии с ASTM A 123 или любым другим стандартом, требуемым клиентом.

Соединение полюсов

Скользящее соединение, фланцевое соединение

Стандарт

ISO 9001: 2008

Длина на секцию

В пределах 14 метров после формования

Стандарт сварки

AWS (Американское общество сварщиков) D 1.1

Толщина

1 мм до 36 мм

Производственный процесс

Испытание сырья → Резка → Гибка → Сварка (продольная) → Проверка размеров → Фланцевая сварка → Бурение отверстий → образец сборки → чистая поверхность → гальванизация или порошковое покрытие, покраска → перекалибровка → пакеты

пакеты

Упаковка из пластиковой бумаги или по желанию клиента.

Наименование продукта Двухпозиционный электрический выключатель
Длина на секцию В течение 14 м после формовки без скольжения
Минимальная предел прочности при растяжении 490mpa
Максимальная предел прочности при растяжении 620mpa

Информация о компании

Информация о компании

для 2-контактного электрического выключателя

Yixing Futao Metal Structural Unit Co.Ltd расположена в № 8 Nanxin East Road, город Хэцяо, город Исин, ​​провинция Цзянсу. Оснащена серией конвейерных систем с ЧПУ для выравнивания, резки, фальцовки и автоматической сварки, мы могли бы производить освещение высокой и средней мачты, освещение дороги силовые опоры, смотровые фонари, осветительные лампы, газонные фонари, опоры светофоров, опоры мониторов, опоры СВЧ-связи и т. д. Кроме того, наш производственный процесс сертифицирован ISO9001. длина 13.000мм и толщина 2-20мм.

Наш веб-сайт: http://www.chinasteelpole.com/ http://www.fu-tao.com/

2-контактный электрический выключатель

Trade Assruance:

Trade Assruance: наш предел торговой гарантии: 532 000 долларов США

для качественного оцинкованного двухполюсного электрического выключателя

производства Prcess

Производственный процесс: для качественного оцинкованного двухполюсного электрического выключателя
тест реза материала → Литье или гибка → Welidng (продольный) → Проверка размеров

→ Фланцевая сварка → Отверстие с отверстиями → Калибровка → Отрезок → Гальванизация или порошковое покрытие, окраска
→ Повторная калибровка → Резьба → Пакеты

История транзакций

Транзакция История для качества оцинкованный 2-контактный электрический выключатель
e
Ниже приводится инф Информация о наших транзакциях, проводимых через Alibaba.ком. Если вам требуется дополнительная информация о данных транзакции, свяжитесь с нами напрямую.

Наши услуги

Наши услуги

по качеству 2п оцинкованный электрический выключатель

1. Ответьте на ваш запрос в течение 24 рабочих часов.

2. Опытные сотрудники ответят на все ваши вопросы в беглой Английской Языке.

3. Возможен индивидуальный дизайн. UEM и UBM приветствуются.

4. Эксклюзивное и уникальное решение может быть предоставлено нашим клиентам нашими хорошо обученными и профессиональными инженерами и персоналом.

5. Специальные скидки и защита продаж предоставляются нашему дистрибьютору.

6. Профессиональная фабрика: Мы являемся производителем, специализирующимся на производстве всех видов стальных опор на протяжении более 20 лет,

конкурентоспособна с хорошим количеством.

Сертификаты

Сертификаты на качество оцинкованный 2-контактный электрический выключатель

У нас есть сертификаты для SGS и ISO9001.

Часто задаваемые вопросы

Часто задаваемые вопросы по качеству оцинкованный 2-контактный электрический выключатель

1.Термин цены: FOB, CFR или CIF.

Цена включает в себя полюсный вал, основание, поперечину и анкерную часть. Морской порт Шанхай.

Для цены FOB, CFR или CIF, пожалуйста, укажите, какая именно модель вам нужна, а затем сообщите нам количество вашего заказа, чтобы

, чтобы мы могли рассчитать местный транспортный и морской фрахт.

2. MOQ: 1 комплект для Заказной

3. Оплата: Обычно 30% по T / T в качестве депозита, баланс по T / T или L / C в поле зрения до отгрузки.Другой платеж

способ может быть предметом переговоров.

4. Срок поставки:

товары могут быть готовы к отправке в течение 10 рабочих дней после получения депозита.

5 Гарантия: 30 лет

6. Обработка поверхности: горячее цинкование

,

Как спроектировать схему питания 5V 2A SMPS

Блок питания (PSU) является важной частью любого электронного дизайна изделия. Для большинства бытовых электронных устройств, таких как мобильные зарядные устройства, динамики Bluetooth, блоки питания, интеллектуальные часы и т. Д., Требуется схема источника питания, которая может преобразовывать напряжение питания переменного тока в 5 В постоянного тока для их работы. В этом проекте мы построим аналогичную схему питания переменного тока в постоянный с номинальной мощностью 10 Вт. То есть наша схема преобразует сеть переменного тока 220В в 5В и обеспечивает максимальный выходной ток до 2А.Эта номинальная мощность должна быть достаточной для питания большинства электронных устройств, работающих на 5В. Также 5V 2A SMPS схема довольно популярна в электронике, так как есть много микроконтроллеров, которые работают на 5V.

Идея проекта состоит в том, чтобы сделать сборку как можно более простой, поэтому мы спроектируем полную схему на точечной плате (монтажной плате), а также создадим наш собственный трансформатор, чтобы любой мог воспроизвести эту конструкцию или создать аналогичные. Возбужденное право! Итак, начнем.Ранее мы также создали SMPS-схему 12 В 15 Вт с использованием печатной платы, чтобы те, кто интересуется проектированием печатной платы для проекта блока питания (блока питания), тоже могли это проверить.

Схема

5V 2A SMPS - Технические характеристики

Различные типы блоков питания ведут себя по-разному в разных средах. Кроме того, SMPS работает в определенных границах ввода-вывода. Надлежащий анализ спецификации необходимо выполнить, прежде чем идти вперед с фактическим дизайном.

Входные данные:

Это будет SMPS в домене преобразования переменного тока в постоянный. Следовательно, вход будет AC. Для значения входного напряжения рекомендуется использовать универсальный входной номинал для SMPS. Таким образом, переменное напряжение будет 85-265 В переменного тока с номинальной частотой 50 Гц. Таким образом, SMPS может использоваться в любой стране независимо от значения сетевого напряжения переменного тока.

Выходная характеристика:

Выходное напряжение выбрано как 5 В с 2А номинального тока.Таким образом, это будет , мощность 10 Вт, . Поскольку этот SMPS будет обеспечивать постоянное напряжение независимо от тока нагрузки, он будет работать в режиме CV (постоянное напряжение). Это выходное напряжение 5 В должно быть постоянным и устойчивым даже при самом низком входном напряжении во время максимальной нагрузки (2 А) на выходе.

Очень желательно, чтобы хороший источник питания имел пульсирующее напряжение менее 30 мВ pk-pk . Целевое пульсирующее напряжение для этого SMPS составляет менее 30 мВ пик-пик пульсации.Поскольку этот SMPS будет встроен в Veroboard с использованием переключающего трансформатора ручной работы , мы можем ожидать немного более высокие значения пульсации. Этой проблемы можно избежать, используя печатную плату.

Защитные функции:

Существуют различные защитные схемы, которые могут использоваться в SMPS для безопасной и надежной работы. Схема защиты защищает SMPS, а также соответствующую нагрузку. В зависимости от типа, цепь защиты может быть подключена через вход или выход.

Для этого SMPS будет использоваться защита от перенапряжения с максимальным рабочим напряжением на входе 275 В переменного тока. Кроме того, для решения проблем с электромагнитными помехами для устранения сгенерированных электромагнитных помех будет использоваться фильтр синфазного режима . На стороне выхода мы будем включать защиты от короткого замыкания , защиты от перенапряжения и защиты от перегрузки по току .

Выбор IC управления питанием

Для каждой цепи SMPS требуется ИС управления питанием, также известная как коммутационная ИС или ИС SMPS или более сухая ИС.Давайте подведем итоги проектирования, чтобы выбрать идеальную ИС управления питанием, которая будет подходить для нашего дизайна. Наши требования к дизайну

  1. 10 Вт мощности. 5В 2А при полной нагрузке.
  2. Универсальный входной рейтинг. 85-265 В переменного тока при 50 Гц
  3. Защита от перенапряжения на входе. Максимальное входное напряжение 275 В переменного тока.
  4. Защита от короткого замыкания на выходе, перенапряжения и перегрузки по току.
  5. Операции с постоянным напряжением.

Из вышеперечисленных требований есть широкий выбор микросхем на выбор, но для этого проекта мы выбрали Power интеграции .Интеграция питания - это полупроводниковая компания, имеющая широкий спектр ИС драйверов питания в различных диапазонах выходной мощности. Исходя из требований и доступности, мы решили использовать TNY268PN из крошечных семейств коммутаторов II . Ранее мы использовали эту микросхему для построения цепи 12 В SMPS на печатной плате.

На изображении выше показана максимальная мощность 15 Вт. Тем не менее, мы сделаем SMPS в открытом кадре и для универсального входного рейтинга. В таком сегменте TNY268PN может обеспечить мощность 15 Вт.Давайте посмотрим на схему контактов.

Проектирование 5-вольтовой 2-амперной цепи SMPS

Лучший способ построить 5V 2A SMPS Schematic - это использовать программное обеспечение PI для интеграции с экспертами. Загрузите программное обеспечение PI expert и используйте версию 8.6. Это отличное программное обеспечение для проектирования блока питания. Схема, показанная ниже, построена с использованием программного обеспечения PI Integration Power Power. Если вы новичок в этом программном обеспечении, вы можете обратиться к разделу дизайна этой схемы 12 В SMPS, чтобы понять, как использовать программное обеспечение.

Прежде чем приступить непосредственно к созданию прототипа, давайте рассмотрим принципиальную схему 5v 2A SMPS и ее работу.

Схема имеет следующие секции-

  1. Защита от перенапряжения на входе и SMPS
  2. AC-DC преобразование
  3. PI фильтр
  4. Схема драйвера или схема переключения
  5. Защита от понижения напряжения.
  6. Схема зажима.
  7. Магнитика и гальваническая развязка.
  8. EMI фильтр
  9. Вторичный выпрямитель и демпферная цепь
  10. Секция фильтра
  11. Раздел обратной связи.

Защита от скачков напряжения на входе и SMPS :

Этот раздел состоит из двух компонентов, F1 и RV1. F1 - плавкий плавкий предохранитель на 1 В 250 В переменного тока, а RV1 - MOV на 7 мм 275 В (, Металлооксидный варистор ). Во время перенапряжения высокого напряжения (более 275 В переменного тока) MOV замерзает и перегорает входной предохранитель. Тем не менее, благодаря функции замедленного срабатывания, предохранитель выдерживает пусковой ток через SMPS.

AC-DC преобразование :

Этот раздел регулируется диодным мостом. Эти четыре диода (внутри DB107) составляют полный мостовой выпрямитель. Диоды 1N4006, но стандарт 1N4007 отлично справится с этой задачей. В этом проекте эти четыре диода заменены полным мостовым выпрямителем DB107.

PI фильтр :

Разные штаты имеют разные стандарты подавления электромагнитных помех. Эта конструкция соответствует стандарту EN61000-Class 3 стандарта , а PI-фильтр сконструирован таким образом, чтобы уменьшить подавление электромагнитных помех в синфазном режиме .Этот раздел создан с использованием C1, C2 и L1. C1 и C2 - конденсаторы 400 В 18 мкФ. Это нечетное значение, поэтому для этого приложения выбрано 22 мкФ 400 В. L1 - это синфазный дроссель, который принимает дифференциальный сигнал EMI для отмены обоих.

Схема привода или схема переключения :

Это сердце SMPS. Первичная сторона трансформатора управляется цепью переключения TNY268PN. Частота переключения составляет 120-132 кГц. Благодаря высокой частоте коммутации можно использовать трансформаторы меньшего размера.Коммутационная схема состоит из двух компонентов: U1 и C3. U1 является основным драйвером IC TNY268PN. C3 - это байпасный конденсатор , который необходим для работы нашего драйвера IC.

Защита от понижения напряжения :

Защита от понижения напряжения обеспечивается чувствительными резисторами R1 и R2. Он используется, когда SMPS переходит в режим автоматического перезапуска и определяет напряжение в сети. Значения R1 и R2 генерируются с помощью инструмента PI Expert .Два резистора в серии - это мера безопасности и хорошая практика, чтобы избежать проблем с отказом резистора. Таким образом, вместо 2М в серии используются два резистора 1М.

Схема зажима :

D1 и D2 - схема зажима. D1 - это TVS-диод , а D2 - - сверхбыстрый восстановительный диод . Трансформатор действует как огромный индуктор через силовой драйвер IC TNY268PN. Поэтому во время цикла выключения трансформатор создает высокие скачки напряжения из-за индуктивности рассеяния трансформатора.Эти высокочастотные скачки напряжения подавляются диодным зажимом на трансформаторе. UF4007 выбран из-за сверхбыстрого восстановления, а P6KE200A выбран для работы TVS. Согласно конструкции, целевое напряжение зажима (VCLAMP) составляет 200 В. Поэтому P6KE200A выбран, а для проблем, связанных со сверхбыстрой блокировкой, UF4007 выбран как D2.

Магниты и гальваническая развязка :

Трансформатор представляет собой ферромагнитный трансформатор, и он не только преобразует переменный ток высокого напряжения в переменный ток низкого напряжения, но также обеспечивает гальваническую развязку.

EMI фильтр :

EMI фильтрация осуществляется конденсатором C4. Это повышает помехоустойчивость схемы, чтобы уменьшить высокие электромагнитные помехи. Это конденсатор Y-класса с номинальным напряжением 2 кВ.

Вторичная цепь выпрямителя и демпфера :

Выходной сигнал трансформатора выпрямляется и преобразуется в постоянный ток с использованием D6, выпрямительного диода Шоттки . Схема демпфирования на D6 обеспечивает подавление переходного напряжения во время операций переключения.Схема демпфирования состоит из одного резистора и одного конденсатора, R3 и C5.

Секция фильтра :

Секция фильтра состоит из конденсатора фильтра C6. Это конденсатор с низким ESR для лучшего подавления пульсаций. Кроме того, LC-фильтр, использующий L2 и C7, обеспечивает лучшее подавление пульсаций на выходе.

Раздел обратной связи :

Выходное напряжение измеряется U3 TL431 и R6 и R7. После обнаружения линии U2 оптрон управляется и гальванически развязывает участок измерения вторичной обратной связи с контроллером первичной стороны.Оптопара имеет транзистор и светодиод внутри. Управляя светодиодом, транзистор управляется. Поскольку связь осуществляется оптически, она не имеет прямого электрического соединения, поэтому также удовлетворяет гальванической развязке в цепи обратной связи.

Теперь, так как светодиод непосредственно управляет транзистором, обеспечивая достаточное смещение на светодиоде оптопары, можно управлять транзистором оптопары , более конкретно схемой возбуждения. Эта система управления используется TL431.Шунтирующий регулятор. Поскольку шунтирующий регулятор имеет резисторный делитель через опорный вывод, он может управлять светодиодом оптопары, который подключен к нему. Контактная обратная связь имеет опорное напряжение 2.5V . Следовательно, TL431 может быть активен, только если напряжение на делителе достаточно. В нашем случае делитель напряжения установлен на значение 5 В. Поэтому, когда выход достигает 5 В, TL431 получает 2,5 В через опорный вывод и, таким образом, активирует светодиод оптопары, который управляет транзистором оптопары и косвенно контролирует TNY268PN.Если напряжение на выходе недостаточно, цикл переключения немедленно приостанавливается.

Сначала TNY268PN активирует первый цикл переключения, а затем определяет его вывод EN. Если все в порядке, он продолжит переключение, если нет, через некоторое время попробует еще раз. Этот цикл продолжается до тех пор, пока все не станет нормальным, что предотвратит проблемы с коротким замыканием или перенапряжением. Вот почему она называется с топологией обратного хода , поскольку выходное напряжение возвращается в драйвер для определения связанных операций.Кроме того, пробный цикл называется режимом сбоя режима сбоя.

D3 - это диод Шоттки . Этот диод преобразует высокочастотный выход переменного тока в постоянный. 3А 60В Диод Шоттки выбран для надежной работы. R4 и R5 выбираются и рассчитываются экспертом PI. Он создает делитель напряжения и передает ток на светодиод оптрона от TL431.

R6 и R7 - простой делитель напряжения, рассчитанный по формуле TL431 REF Voltage = (Vout x R7) / R6 + R7 .Опорное напряжение 2.5V и Vout является 12V. Выбрав значение R6 23,7 тыс., R7 стал примерно 9,09 тыс.

Построение переключающего трансформатора для нашей цепи SMPS

Обычно для цепи SMPS требуется переключающий трансформатор, эти трансформаторы могут быть приобретены у производителей трансформаторов в соответствии с вашими проектными требованиями. Но проблема здесь в том, что если вы изучаете материал по созданию прототипа, вы не можете найти точный трансформатор с полок для вашего дизайна.Итак, мы узнаем, как построить коммутационный трансформатор на основе требований к конструкции, данных нашим программным обеспечением PI Expert.

Давайте посмотрим на сгенерированную схему построения трансформатора.

Как показано на рисунке выше, нам нужно выполнить 103 витка одного провода 32 AWG на первичной стороне и 5 витков двух проводов 25 AWG на вторичной стороне.

На приведенном выше изображении начальная точка обмоток и направление обмотки описаны в виде механической схемы.Чтобы сделать этот трансформатор, необходимы следующие вещи -

  1. EE19 сердечник, NC-2H или эквивалентная спецификация с зазором для ALG 79 нГн / T 2
  2. Бобина с 5 контактами на первичной и вторичной стороне.
  3. Барьерная лента толщиной 1 мил. Требуется лента шириной 9 мм.
  4. 32 AWG эмалированная медная проволока с паяным покрытием.
  5. 25AWG эмалированная медная проволока с паяным покрытием.
  6. LCR метр.

EE19 ядро ​​ с NC-2H с зазором сердечника 79nH / T2 требуется; как правило, это доступно в парах.Бобина является общей с 4 первичными и 5 вторичными булавками. Однако здесь используется шпулька с 5 штифтами с обеих сторон.

Для барьерной ленты используется стандартная клейкая лента с толщиной основы более 1 мил (обычно 2 мил). Во время действий, связанных с постукиванием, ножницы используются, чтобы разрезать ленту для идеальной ширины. Медные провода закупаются у старых трансформаторов, и их можно купить в местных магазинах. Ядро и шпулька, которые я использую, показаны ниже

Шаг 1: Добавьте припой в 1-й и 5-й контакт на первичной стороне.Припой провода 32 AWG на выводе 5 и направление намотки по часовой стрелке. Продолжайте до 103 поворотов, как показано ниже

Это формирует первичную сторону нашего трансформатора, когда 103 витка обмотки завершены, мой трансформатор выглядел следующим образом.

Шаг 2: Применить клейкую ленту для изоляции, необходимо 3 витка клейкой ленты. Это также помогает удерживать катушку на месте.

Шаг 3: Запустить вторичную обмотку с выводов 9 и 10.Вторичная сторона изготовлена ​​из двух нитей эмалированных медных проводов 25AWG. Припаяйте один медный провод к контакту 9, а другой - к контакту 10. Направление намотки снова по часовой стрелке. Продолжайте до 5 оборотов и припаяйте концы на контактах 5 и 6. Добавьте изоленту, применив клейкую ленту так же, как и раньше.

После того, как первичная и вторичная обмотки выполнены и используется клейкая лента, мой трансформатор выглядел так, как показано ниже

Шаг 4: Теперь мы можем надежно закрепить два сердечника с помощью клейкой ленты.После этого готовый трансформатор должен выглядеть следующим образом.

Шаг 5: Также не забудьте обмотать скотч рядом. Это уменьшит вибрацию при передаче потока высокой плотности.

После выполнения вышеуказанных шагов и испытания трансформатора с использованием измерителя LCR, как показано ниже. Измеритель показывает индуктивность 1,125 мГн или 1125 э.ч.

Построение схемы SMPS:

Когда трансформатор будет готов, мы можем приступить к сборке других компонентов на пунктирной плате.Требуемые детали для схемы можно найти в списке спецификаций ниже

Как только компоненты спаяны, моя плата выглядит примерно так.

Тестирование цепи 5 В 2A SMPS

Для проверки схемы я подключил входную сторону к источнику питания через VARIAC для контроля входного напряжения переменного тока. Выходное напряжение при 85 В переменного тока и 230 В переменного тока показано ниже-


Как видно в обоих случаях, выходное напряжение поддерживается на уровне 5 В.Но затем я подключил выход к своему прицелу и проверил наличие пульсаций. Измерение пульсаций показано ниже

Пульсация на выходе достаточно высокая, она показывает выход пульсации 150 мВ pk-pk. Это совсем не хорошо для цепи питания. На основании анализа высокая пульсация обусловлена ​​факторами ниже-

  1. Неправильное проектирование печатных плат.
  2. Отскок от земли.
  3. Радиатор PCB не подходит.
  4. Нет отключения на шумных линиях подачи.
  5. Увеличенные допуски на трансформаторе из-за ручной намотки. Производители трансформаторов применяют лак для погружения во время обмоток машины для лучшей устойчивости трансформаторов.

Если цепь преобразуется в правильную печатную плату, мы можем ожидать пульсирующий выход источника питания в пределах 50 мВ pk-pk даже с трансформатором с ручной намоткой. Тем не менее, поскольку veroboard не является безопасным вариантом для переключения импульсного источника питания в области переменного тока в постоянный, постоянно предлагается установить надлежащую печатную плату перед применением высоковольтных цепей в практических сценариях.Вы можете проверить видео в конце этой страницы, чтобы проверить, как работает схема в условиях нагрузки.

Надеюсь, вы поняли учебник и научились создавать собственные схемы SMPS с помощью трансформатора ручной работы. Если у вас есть какие-либо вопросы, оставьте их в разделе комментариев ниже или используйте наши форумы для дополнительных вопросов.

,

Смотрите также


© 2015, All-Stanki.ru - оборудование для производства окон пвх и стеклопакетов Содержание, карта сайта.